3.198 \(\int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=145 \[ \frac{(A-5 B) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 B \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}+\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}} \]

[Out]

(2*B*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(3/2)*d) + ((A - 5*B)*ArcTan[(Sqrt[a]*Sin[c +
 d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A - B)*Sqrt[Cos[c + d
*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.403173, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {2977, 2982, 2782, 205, 2774, 216} \[ \frac{(A-5 B) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 B \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}+\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(2*B*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(3/2)*d) + ((A - 5*B)*ArcTan[(Sqrt[a]*Sin[c +
 d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A - B)*Sqrt[Cos[c + d
*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{3/2}} \, dx &=\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{\int \frac{\frac{1}{2} a (A-B)+2 a B \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{(A-5 B) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}+\frac{B \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{a^2}\\ &=\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac{(A-5 B) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}-\frac{(2 B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^2 d}\\ &=\frac{2 B \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^{3/2} d}+\frac{(A-5 B) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 1.8249, size = 226, normalized size = 1.56 \[ \frac{\cos ^3\left (\frac{1}{2} (c+d x)\right ) \left (\frac{(A-B) \sqrt{\cos (c+d x)} \tan \left (\frac{1}{2} (c+d x)\right ) \sec \left (\frac{1}{2} (c+d x)\right )}{d}-\frac{i e^{\frac{1}{2} i (c+d x)} \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (-\sqrt{2} (A-5 B) \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )+4 B \sinh ^{-1}\left (e^{i (c+d x)}\right )-4 B \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )\right )}{\sqrt{2} d \sqrt{1+e^{2 i (c+d x)}}}\right )}{(a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(Cos[(c + d*x)/2]^3*(((-I)*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(4*B*ArcSinh[E^
(I*(c + d*x))] - Sqrt[2]*(A - 5*B)*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] - 4*
B*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]]))/(Sqrt[2]*d*Sqrt[1 + E^((2*I)*(c + d*x))]) + ((A - B)*Sqrt[Cos[c + d
*x]]*Sec[(c + d*x)/2]*Tan[(c + d*x)/2])/d))/(a*(1 + Cos[c + d*x]))^(3/2)

________________________________________________________________________________________

Maple [B]  time = 0.579, size = 298, normalized size = 2.1 \begin{align*} -{\frac{ \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}}{4\,d \left ( \sin \left ( dx+c \right ) \right ) ^{5}{a}^{2}}\sqrt{\cos \left ( dx+c \right ) }\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( 2\,A \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \sqrt{2}\cos \left ( dx+c \right ) -5\,B\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \sqrt{2}\cos \left ( dx+c \right ) -2\,A \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}-2\,B\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}-8\,B\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) +2\,B\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+cos(d*x+c)*a)^(3/2),x)

[Out]

-1/4/d*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^2*(2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(
d*x+c)^2+A*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)*2^(1/2)*cos(d*x+c)-5*B*arcsin((-1+cos(d*x+c))/sin(d*x
+c))*sin(d*x+c)*2^(1/2)*cos(d*x+c)-2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)-2*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*cos(d*x+c)^2-8*B*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*sin(d*x+c)*cos(d*x+c)+2*B*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c))/sin(d*x+c)^5/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/a^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 34.5713, size = 571, normalized size = 3.94 \begin{align*} -\frac{\sqrt{2}{\left ({\left (A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (A - 5 \, B\right )} \cos \left (d x + c\right ) + A - 5 \, B\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 2 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (A - B\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 8 \,{\left (B \cos \left (d x + c\right )^{2} + 2 \, B \cos \left (d x + c\right ) + B\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(sqrt(2)*((A - 5*B)*cos(d*x + c)^2 + 2*(A - 5*B)*cos(d*x + c) + A - 5*B)*sqrt(a)*arctan(sqrt(2)*sqrt(a*co
s(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a*cos(d*x + c) + a)*(A - B)*sqrt(cos(d*x +
 c))*sin(d*x + c) + 8*(B*cos(d*x + c)^2 + 2*B*cos(d*x + c) + B)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(c
os(d*x + c))/(sqrt(a)*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \cos{\left (c + d x \right )}\right ) \sqrt{\cos{\left (c + d x \right )}}}{\left (a \left (\cos{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))*sqrt(cos(c + d*x))/(a*(cos(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)